Exercises 2.3 (Polynomials)

1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+5 x-3 ; \mathrm{g}(\mathrm{x})=x^{2}-2$
(ii) $\mathrm{p}(\mathrm{x})=x^{4}-3 x^{2}+4 x+5 ; \mathrm{g}(\mathrm{x})=x^{2}+1-\mathrm{x}$
(iii) $\mathrm{p}(\mathrm{x})=x^{4}-5 x+6 ; \mathrm{g}(\mathrm{x})=2-x^{2}$

Solution:
(i)

$$
\text { (i) } \mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+5 x-3 ; \mathrm{g}(\mathrm{x})=x^{2}-2
$$

$$
7 x-9
$$

Quotient $=x-3$ and remainder $7 x-9$

Math-O-Mania

(ii) $\mathrm{p}(\mathrm{x})=x^{4}-3 x^{2}+4 x+5 \quad ; \mathrm{g}(\mathrm{x})=x^{2}+1-\mathrm{x}$

$$
\begin{aligned}
& x^{2}+x-3 \\
& x ^ { 2 } - x + 1 \longdiv { \begin{array} { l l }
{ x ^ { 4 } } & { - 3 x ^ { 2 } + 4 x - 5 } \\
{ x ^ { 4 } - x ^ { 3 } } & { + x ^ { 2 } }
\end{array} } \\
& x^{3}-4 x^{2}+4 x+5 \\
& -x^{3} \mp x^{2} \pm x \\
& -3 x^{2}+3 x+5 \\
& \mp 3 x^{2} \pm 3 x \mp 3
\end{aligned}
$$

Quotient $=x^{\wedge} 2+x-3$ and remainder 8
(iii) $\mathrm{p}(\mathrm{x})=x^{4}-5 x+6 ; \mathrm{g}(\mathrm{x})=2-x^{2}$

$$
- x ^ { 2 } + 2 \longdiv { } \begin{array} { c }
{ - x ^ { 2 } - 2 } \\
{ x ^ { 4 } } \\
{ - 5 x + 6 } \\
{ x ^ { 4 } + 2 x ^ { 2 } }
\end{array}
$$

$2 x^{2}-5 x+6$
$-2 x^{2} \quad-4$
$-5 x+10$

Quotient $=-x^{2}-2$ and remainder $-5 x+10$

Math-O-Mania

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

Answer
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

$$
\begin{array}{r}
t ^ { 2 } - 3 \longdiv { 2 t ^ { 4 } / 3 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \\
\frac{ \pm 2 t^{4} \quad \mp 6 t^{2}}{+3 t^{7}+4 t^{2}-9 /-12} \\
\frac{ \pm 3 t^{3} \quad \mp 9 t}{+4 t^{2} \quad-12} \\
\frac{ \pm 4 t^{2} \quad \mp 12}{0}
\end{array}
$$

Since on division the remainder is 0 , so we can say that the first polynomial is a factor of the second polynomial.

$$
\text { (ii) } x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2
$$

$$
\begin{array}{r}
3 x^{2}-4 x+2 \\
\left.x^{2}+3 x+1\right) 3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
\pm 3 x^{4} \pm 9 x^{3} \pm 3 x^{2} \\
-4 x^{3}-10 x^{2}+2 x+2 \\
\mp 4 x^{3} \mp 12 x^{2} \mp 4 x \\
+2 x^{2}+6 x+2 \\
\pm 2 x^{2} \pm 6 x \pm 2 \\
0
\end{array}
$$

Since on division the remainder is 0 , so we can say that the first polynomial is a

Math-O-Mania

factor of the second polynomial.
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

$$
x^{2}-1
$$

$$
x ^ { 3 } - 3 x + 1 \longdiv { x ^ { 5 } - 4 x ^ { 3 } + x ^ { 2 } + 3 x + 1 }
$$

$$
\frac{ \pm x^{5} \mp 3 x^{3} \pm x^{2}}{-x^{3}+3 x+1}
$$

$$
\mp x^{3} \pm 3 x \mp 1
$$

2
Since we are getting a non-zero remainder so we can say that $g(x)$ is not a factor of $p(x)$.
3. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ if two of its zeroes are $\sqrt{5 / 3}$ and $\sqrt{5 / 3}$.
Ans. Two zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ are $\sqrt{5 / 3}$ and $-\sqrt{5} / 3$.
which means that $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}$ is a factor of $\mathbf{3} \boldsymbol{x}^{4}+\mathbf{6} \boldsymbol{x}^{3}-\mathbf{2} \boldsymbol{x}^{2}-\mathbf{1 0 x} \boldsymbol{x}$

Applying Division Algorithm to find more factors we get:

Math-O-Mania

$$
\begin{array}{r}
x^{2}-\frac{5}{3} \begin{array}{r}
3 x^{2}+6 x+3 \\
\frac{3 x^{4}+6 x^{3}-2 x^{2}-10 x-5}{}+3 x^{4} \mp 5 x^{2} \\
+6 x^{3}+3 x^{2}-10 x-5 \\
\pm 6 x^{3} \mp 10 x \\
+3 x^{2}-5 \\
\pm 3 x^{2} \quad \mp 5 \\
0
\end{array}
\end{array}
$$

We have $P(x)=g(x)^{*} q(x)+R(x)$
$R(x)=0$

So ,
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-5 / 3\right)\left(3 x^{2}+6 x+3\right)$

Now we will get the other two factors from ($\left.3 x^{2}+6 x+3\right)$, which on factorizing will give us
$\left(3 x^{2}+6 x+3\right)=3(x+1)(x+1)$
Therefore, the other two factors are $(x+1)=0$ and $(x+1)=0$
both on solving will give us $x=-1$.
4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.
Answer
Here in the given question,
Dividend $=x^{3}-3 x^{2}+x+2$
Quotient $=x-2$
Remainder $=-2 x+4$
Divisor $=g(x)$
We know that,

Math-O-Mania

Dividend $=$ Quotient \times Divisor + Remainder
$\Rightarrow x^{3}-3 x^{2}+x+2=(x-2) \times g(x)+(-2 x+4) \Rightarrow x^{3}-3 x^{2}+x+2-(-2 x+4)=(x-2) \times g(x)$
$\Rightarrow x^{3}-3 x^{2}+3 x-2=(x-2) \times g(x)$
$\Rightarrow g(x)=\left(x^{3}-3 x^{2}+3 x-2\right) /(x-2)$

$$
x^{2}-x+1
$$

0
$\therefore g(x)=\left(x^{2}-x+1\right)$
5.Give examples of polynomial $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

Answer

(i) Let us assume the division of $6 x^{2}+2 x+2$ by 2

Here, $p(x)=6 x^{2}+2 x+2$
$g(x)=2$
$q(x)=3 x^{2}+x+1$
$r(x)=0$
Degree of $p(x)$ and $q(x)$ is same i.e. 2.
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
Or, $6 x^{2}+2 x+2=2 x\left(3 x^{2}+x+1\right)$
Hence, division algorithm is satisfied.

Math-O-Mania

(ii) Let us assume the division of $x^{3}+x$ by x^{2},

Here, $p(x)=x^{3}+x$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=x$
Clearly, the degree of $q(x)$ and $r(x)$ is the same i.e., 1.
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+x=\left(x^{2}\right) \times x+x$
$x^{3}+x=x^{3}+x$
Thus, the division algorithm is satisfied.
(iii) Let us assume the division of $x^{3}+1$ by x^{2}.

Here, $p(x)=x^{3}+1$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=1$
Clearly, the degree of $r(x)$ is 0 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+1=\left(x^{2}\right) \times x+1$
$x^{3}+1=x^{3}+1$
Thus, the division algorithm is satisfied.

Math-O-Mania

