Exercise 2.2 (Polynomials)

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $\mathbf{4} u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

Solution
(i) $x^{2}-2 x-8$
$=(x-4)(x+2)$
The value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$,
i.e., when $x=4$ or $x=-2$

Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .

$$
\begin{aligned}
\text { Sum of zeroes } & =4+(-2) \\
& =2=-(-2) / 1 \\
& =-(\text { Coefficient of } x) / \text { Coefficient of } x^{2}
\end{aligned}
$$

Math-O-Mania

```
Product of zeroes = 4 × (-2)
    =-8=-8/1
    = Constant term/Coefficient of x2
```

(ii) $4 s^{2}-4 s+1=0$
$=(2 s-2)^{2}=0$
$=(2 s-1)(2 s-1)=0$
The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, i.e., $s=1 / 2$
Therefore, the zeroes of $4 s^{2}-4 s+1$ are $1 / 2$ and $1 / 2$.

Sum of zeroes $=1 / 2+1 / 2$
$=1=-(-4) / 4$
$=-($ Coefficient of s$) /$ Coefficient of s^{2}
Product of zeroes $=1 / 2 \times 1 / 2=1 / 4=$ Constant term/Coefficient of s^{2}.
(iii) $6 x^{2}-3-7 x$
$=6 x^{2}-7 x-3$
$=(3 x+1)(2 x-3)$
The value of $6 x^{2}-7 x-3$ is zero when $3 x+1=0$ or $2 x-3=0$, i.e., $x=-1 / 3$ or $x=3 / 2$
Therefore, the zeroes of $6 x^{2}-7 x-3$ are $-1 / 3$ and $3 / 2$.

Sum of zeroes $=-1 / 3+3 / 2$

$$
=7 / 6=-(-7) / 6
$$

$=-($ Coefficient of x$) /$ Coefficient of x^{2}
Product of zeroes $=-1 / 3 \times 3 / 2$
$=-1 / 2=-3 / 6$
= Constant term/Coefficient of x^{2}.

Math-O-Mania

Abhishek Dangayach
(iv) $\mathbf{4} u^{2}+8 u$
$=4 u^{2}+8 u+0$
$=4 u(u+2)$
The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$, i.e., $u=0$ or $u=-2$
Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)$

$$
=-2=-(8) / 4
$$

$=-($ Coefficient of u$) /$ Coefficient of u^{2}
Product of zeroes $=0 \times(-2)$
$=0=0 / 4$
= Constant term/Coefficient of u^{2}.
(v) $t^{2}-15$
$=(t-\mathrm{V} 15)(\mathrm{t}+\mathrm{V} 15)$
The value of $t^{2}-15$ is zero when $t-\sqrt{ } 15=0$ or $t+\sqrt{ } 15=0$, i.e., when $t=v 15$ or $t=-\mathrm{V} 15$

Sum of zeroes $=\mathrm{V} 15+-\mathrm{v} 15$

$$
\begin{aligned}
& =0=-0 / 1 \\
& =-(\text { Coefficient of } \mathrm{t}) / \text { Coefficient of } t^{2}
\end{aligned}
$$

Product of zeroes $=(V 15)(-\mathrm{V} 15)$

$$
=-15=-15 / 1
$$

$$
=\text { Constant term/Coefficient of } t^{2} \text {. }
$$

(vi) $3 x^{2}-x-4$
$=(3 x-4)(x+1)$
The value of $3 x^{2}-x-4$ is zero when $3 x-4=0$ and $x+1=0$,i.e., when $x=4 / 3$ or $x=-1$

Math-O-Mania

Therefore, the zeroes of $3 x^{2}-x-4$ are $4 / 3$ and -1 .

Sum of zeroes $=4 / 3+(-1)$

$$
=1 / 3=-(-1) / 3
$$

$$
=-(\text { Coefficient of } x) / \text { Coefficient of } x^{2}
$$

Product of zeroes $=4 / 3 \times(-1)$

$$
=-4 / 3
$$

$=$ Constant term/Coefficient of x^{2}.
2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $1 / 4,-1$

Solution (i) 1/4, -1
Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β
$\alpha+\beta=1 / 4=-b / a$
$\alpha ß=-1=-4 / 4=c / a$

If $\mathrm{a}=4$, then $\mathrm{b}=-1, \mathrm{c}=-4$

Therefore, the quadratic polynomial is $4 x^{2}-x-4$.
(ii) $\sqrt{ } 2,1 / 3$

Solution (ii) V2, 1/3

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β
$\alpha+\beta=\sqrt{ } 2=3 \sqrt{ } 2 / 3=-b / a$
$\alpha ß=1 / 3=c / a$

If $a=3$, then $b=-3 v 2, c=1$
Therefore, the quadratic polynomial is $3 x^{2}-3 \sqrt{ } 2 x+1$.

Math-O-Mania

(iii) 0, v5

Solution :- Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β
$\alpha+\beta=0=0 / 1=-b / a$
$\alpha ß=V 5=\mathrm{V} 5 / 1=\mathrm{c} / \mathrm{a}$
If $a=1$, then $b=0, c=v 5$
Therefore, the quadratic polynomial is $x^{2}+\sqrt{ } 5$.
(iv) 1, 1

Solution :- Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and B
$\alpha+\beta=1=1 / 1=-b / a$
$\alpha ß=1=1 / 1=c / a$
If $\mathrm{a}=1$, then $\mathrm{b}=-1, \mathrm{c}=1$
Therefore, the quadratic polynomial is $x^{2}-\mathrm{x}+1$.
(v) $-1 / 4,1 / 4$

Solution :- Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β
$\alpha+\beta=-1 / 4=-b / a$
$\alpha ß=1 / 4=c / a$
If $a=4$, then $b=1, c=1$
Therefore, the quadratic polynomial is $4 x^{2}+x+1$.
(vi) 4,1

Math-O-Mania

Solution :- Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β $\alpha+\beta=4=4 / 1=-b / a$
$\alpha ß=1=1 / 1=c / a$
If $a=1$, then $b=-4, c=1$

Math-O-Mania

