MATH-O-MANIA

Exercise 2.2 (Polynomials)

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

- (i) $x^2 2x 8$
- (ii) $4s^2 4s + 1$
- (iii) $6x^2 3 7x$
- (iv) 4*u*² + 8u
- (v) $t^2 15$
- (vi) $3x^2 x 4$

Solution

(i)
$$x^2 - 2x - 8$$

= (x - 4) (x + 2)

The value of $x^2 - 2x - 8$ is zero when x - 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = -2

Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2.

```
Sum of zeroes = 4 + (-2)
```

= 2 = -(-2)/1

= -(Coefficient of x)/Coefficient of x^2

Math-O-Mania

Abhishek Dangayach 8740060609 Aayush Dangayach 9529238688

Product of zeroes = $4 \times (-2)$

= -8 = -8/1

= Constant term/Coefficient of x2

(ii) $4s^2 - 4s + 1 = 0$

 $= (2s - 2)^2 = 0$ = (2s-1)(2s-1) = 0

The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., s = 1/2

Therefore, the zeroes of $4s^2$ - 4s + 1 are 1/2 and 1/2.

Sum of zeroes = 1/2 + 1/2= 1 = -(-4)/4 = -(Coefficient of s)/Coefficient of s^2

Product of zeroes = $1/2 \times 1/2 = 1/4$ = Constant term/Coefficient of s^2 .

(iii) $6x^2 - 3 - 7x$

$$= 6x^2 - 7x - 3$$

= (3x + 1)(2x - 3)

The value of $6x^2 - 7x - 3$ is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e., x = -1/3 or x = 3/2

Therefore, the zeroes of $6x^2 - 7x - 3$ are -1/3 and 3/2.

Sum of zeroes = -1/3 + 3/2= 7/6 = -(-7)/6= $-(Coefficient of x)/Coefficient of x^2$

Product of zeroes = $-1/3 \times 3/2$

= -1/2 = -3/6

= Constant term/Coefficient of x^2 .

Math-O-Mania

Abhishek Dangayach 8740060609

D-2 Mukherji Colony Shastri Nagar, Jaipur

Aayush Dangayach 9529238688

Website :- www.mathomania.in

(iv) $4u^2 + 8u$

 $=4u^2 + 8u + 0$

= 4u(u + 2)

The value of $4u^2$ + 8u is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2

```
Therefore, the zeroes of 4u^2 + 8u are 0 and - 2.
```

```
Sum of zeroes = 0 + (-2)
```

= -2 = -(8)/4= -(Coefficient of u)/Coefficient of u^2

```
Product of zeroes = 0 \times (-2)
```

= 0 = 0/4

= Constant term/Coefficient of u^2 .

(v) $t^2 - 15$

 $= (t - \sqrt{15}) (t + \sqrt{15})$

The value of t^2 - 15 is zero when t - $\sqrt{15}$ = 0 or t + $\sqrt{15}$ = 0, i.e., when t = $\sqrt{15}$ or t = - $\sqrt{15}$

```
Sum of zeroes = \sqrt{15} + \sqrt{15}
```

```
= 0 = -0/1
= -(Coefficient of t)/Coefficient of t^2
```

```
Product of zeroes = (\sqrt{15}) (-\sqrt{15})
```

```
= -15 = -15/1
```

= Constant term/Coefficient of t^2 .

```
(vi) 3x^2 - x - 4
```

= (3x - 4)(x + 1)

The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 and x + 1 = 0, i.e., when x = 4/3 or x = -1

Math-O-Mania

Abhishek Dangayach 8740060609

Aayush Dangayach 9529238688

Therefore, the zeroes of $3x^2 - x - 4$ are 4/3 and -1.

Sum of zeroes = 4/3 + (-1)

= 1/3 = -(-1)/3

= -(Coefficient of x)/Coefficient of x^2

Product of zeroes = $4/3 \times (-1)$

= -4/3

= Constant term/Coefficient of x^2 .

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4 , -1

Solution (i) 1/4 , -1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

 $\alpha + \beta = 1/4 = -b/a$

 α ß = -1 = -4/4 = c/a

If a = 4, then b = -1, c = -4

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii) √2 , 1/3

Solution (ii) $\sqrt{2}$, 1/3

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

 $\alpha + \beta = \sqrt{2} = 3\sqrt{2}/3 = -b/a$

 α ß = 1/3 = c/a

If a = 3, then b = $-3\sqrt{2}$, c = 1

Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2x} + 1$.

Math-O-Mania

Abhishek Dangayach 8740060609

Aayush Dangayach 9529238688

(iii) 0, √5

Solution :- Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

$$\alpha + \beta = 0 = 0/1 = -b/a$$

 α ß = $\sqrt{5}$ = $\sqrt{5}/1$ = c/a

If a = 1, then b = 0, c = $\sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1

Solution :- Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

$$\alpha + \beta = 1 = 1/1 = -b/a$$

 α ß = 1 = 1/1 = c/a

If a = 1, then b = -1, c = 1

Therefore, the quadratic polynomial is $x^2 - x + 1$.

(v) -1/4 ,1/4

Solution :- Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

 $\alpha + \beta = -1/4 = -b/a$

αß = ¼ = c/a

If a = 4, then b = 1, c = 1

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4,1

Math-O-Mania

Abhishek Dangayach 8740060609 Aayush Dangayach 9529238688

Solution :- Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

- $\alpha + \beta = 4 = 4/1 = -b/a$
- α ß = 1 = 1/1 = c/a
- If a = 1, then b = -4, c = 1

Therefore, the quadratic polynomial is x^2 - 4x +1.

h () Mani

Abhishek Dangayach 8740060609 Aayush Dangayach 9529238688