Exercise 1.4

1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal
expansion:
(i) $13 / 3125$
(ii) $17 / 8$
(iii) 64/455
(iv) $15 / 1600$
(v) $29 / 343$
(vi) $23 / 23 \times 52$
(vii) $129 / 22 \times 57 \times 75$
viii) $6 / 15$
(ix) $35 / 50$
(x) $77 / 210$

Answer
(i) $13 / 3125$

Factorize the denominator we get
$3125=5 \times 5 \times 5 \times 5 \times 5=5^{5}$

So denominator is in form of 5 m so it is terminating.
(ii) $17 / 8$

Factorize the denominator we get
$8=2 \times 2 \times 2=2^{3}$

So denominator is in form of 2 m so it is terminating.
(iii) 64/455

Factorize the denominator we get
$455=5 \times 7 \times 13$

Math-O-Mania

There are 7 and 13 also in denominator so denominator is not in form of $2 \mathrm{~m} \times 5 \mathrm{n}$. so it is not terminating.
(iv) $15 / 1600$

Factorize the denominator we get
$1600=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5=2^{6} \times 5^{2}$
so denominator is in form of $2 m \times 5 n$

Hence it is terminating.
(v) 29/343

Factorize the denominator we get
$343=7 \times 7 \times 7=7^{3}$

There are 7 also in denominator so denominator is not in form of $2 m \times 5 n$
Hence it is non-terminating.
(vi) $23 /\left(2^{3} \times 5^{2}\right)$

Denominator is in form of $2 m \times 5 n$

Hence it is terminating.
(vii) $129 /\left(2^{2} \times 5^{7} \times 7^{5}\right)$

Denominator has 7 in denominator so denominator is not in form of $2 m \times 5 n$

Hence it is none terminating.
(viii) 6/15

Math-O-Mania

Divide nominator and denominator both by 3 we get $2 / 5$

Denominator is in form of 5 m so it is terminating.
(ix) 35/50 divide denominator and nominator both by 5 we get 7/10

Factorize the denominator we get
$10=2 \times 5$
So denominator is in form of $2 m \times 5 n$ so it is terminating.
(x) $77 / 210$

Simplify it by dividing nominator and denominator both by 7 we get 11/30

Factorize the denominator we get
$30=2 \times 3 \times 5$
Denominator has 3 also in denominator so denominator is not in form of $2 m \times 5 n$

Hence it is none terminating.
2. Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

Answer
(i) $13 / 3125=13 / 55=13 \times 25 / 55 \times 25=416 / 105=0.00416$
(ii) $17 / 8=17 / 23=17 \times 53 / 23 \times 53=17 \times 53 / 103=2125 / 103=2.125$
(iv) $15 / 1600=15 / 24 \times 102=15 \times 54 / 24 \times 54 \times 102=9375 / 106=0.009375$
(vi) $23 / 2352=23 \times 53 \times 22 / 2352 \times 53 \times 22=11500 / 105=0.115$
(viii) $6 / 15=2 / 5=2 \times 2 / 5 \times 2=4 / 10=0.4$

Math-O-Mania

(ix) $35 / 50=7 / 10=0.7$.
3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form p, q you say about the prime factors of q?
(i) $\mathbf{4 3 . 1 2 3 4 5 6 7 8 9}$
(ii) 0.120120012000120000 ...
(iii) $\mathbf{4 3 . 1 2 3 4 5 6 7 8 9}$

Answer
(i) Since this number has a terminating decimal expansion, it is a rational number of the form p / q, and q is of the form $2 \mathrm{~m} \times 5 \mathrm{n}$.
(ii) The decimal expansion is neither terminating nor recurring. Therefore, the given number is an irrational number.
(iii) Since the decimal expansion is non-terminating recurring, the given number is a rational number of the form p / q, and q is not of the form $2 m \times 5 n$.

Math-O-Mania

