MATH-O-MANIA

Exercise 1.3 (Real Numbers)

1. Prove that V 5 is irrational.

Answer

Let take V 5 as rational number
If a and b are two co prime number and b is not equal to 0 .
We can write $\mathrm{V} 5=\mathrm{a} / \mathrm{b}$
Multiply by both side we get
bV5 = a
To remove root, Squaring on both sides, we get
$5 b^{2}=a^{2}$

Therefore, 5 divides a^{2} and according to theorem of rational number, for any prime number p which is a factor of a^{2} then it will divide a also.

That means 5 will divide a also. So we can write
$a=5 c$
Putting value of a in equation (i) we get
$5 b^{2}=(5 c)^{2}$
$5 b^{2}=25 c^{2}$
Divide by 25 we get

Math-O-Mania

$\frac{(b)^{2}}{5}=c^{2}$

Similarly, we get that b will divide by 5
and we have already get that a is divide by 5
but a and b are co-prime number. So it contradicts.

Hence $\sqrt{ } 5$ is not a rational number, it is irrational.

2. Prove that $3+2 \sqrt{ } 5$ is irrational.

Answer

Let take that $3+2 \sqrt{ } 5$ is a rational number.

So we can write this number as
$3+2 \sqrt{ } 5=a / b$
Here a and b are two co prime number $a n d b$ is not equal to 0
Subtract 3 both sides we get
$2 \sqrt{ } 5=a / b-3$
$2 \sqrt{ } 5=(a-3 b) / b$

Now divide by 2, we get
$\sqrt{ } 5=(a-3 b) / 2 b$
Here a and b are integer so $(a-3 b) / 2 b$ is a rational number so $\sqrt{ } 5$ should be a rational number $B u t \sqrt{ } 5$ is a irrational number so it contradicts.

Hence, $3+2 \sqrt{ } 5$ is a irrational number.

3. Prove that the following are irrationals:

(i) $\mathbf{1 / \sqrt { } 2}$ (ii) $7 \sqrt{ } 5$ (iii) $\mathbf{6 + \sqrt { } 2}$

Math-O-Mania

Answer
(i) Let take that $1 / \sqrt{ } 2$ is a rational number.

So we can write this number as
$1 / \sqrt{ } 2=a / b$
Here a and b are two co prime number and b is not equal to 0

Multiply by $\sqrt{ } 2$ both sides we get
$1=(a v 2) / b$
Now multiply by b
$b=a \sqrt{ } 2$
divide by a we get
$\mathrm{b} / \mathrm{a}=\mathrm{V} 2$

Here a and b are integer so b / a is a rational number so $\sqrt{ } 2$ should be a rational number But $\sqrt{ } 2$ is a irrational number so it contradicts.

Hence, $1 / \sqrt{ } 2$ is a irrational number
(ii) Let take that $7 \sqrt{ } 5$ is a rational number.

So we can write this number as
$7 \sqrt{ } 5=a / b$
Here a and b are two co prime number and b is not equal to 0
Divide by 7 we get
$\sqrt{ } 5=a /(7 b)$

Here a and b are integer so $a / 7 b$ is a rational number so $\sqrt{ } 5$ should be a rational number but $\sqrt{ } 5$ is a irrational number so it contradicts.

Hence, $7 \sqrt{ } 5$ is a irrational number.

Math-O-Mania

(iii) Let take that $6+\sqrt{ } 2$ is a rational number.

So we can write this number as
$6+\sqrt{ } 2=a / b$

Here a and b are two co prime number and b is not equal to 0

Subtract 6 both side we get
$\mathrm{V} 2=\mathrm{a} / \mathrm{b}-6$
$V 2=(a-6 b) / b$

Here a and b are integer so $(a-6 b) / b$ is a rational number so $\sqrt{ } 2$ should be a rational number.

But $\sqrt{ } 2$ is a irrational number so it contradicts.

Hence, $6+\sqrt{ } 2$ is a irrational number.

Math-O-Mania

