Exercise 1.2 (Real Numbers)

1. Express each number as product of its prime factors:
(i) 140
(ii) 156
(iii) 3825
(iv) 5005
(v) 7429

Answer
(i) $140=2 \times 2 \times 5 \times 7=2^{2} \times 5 \times 7$
(ii) $156=2 \times 2 \times 3 \times 13=2^{2} \times 3 \times 13$
(iii) $3825=3 \times 3 \times 5 \times 5 \times 17=3^{2} \times 5^{2} \times 17$
(iv) $5005=5 \times 7 \times 11 \times 13$
(v) $7429=17 \times 19 \times 23$
2. Find the LCM and HCF of the following pairs of integers and verify that LCM $\times \mathrm{HCF}=$ product of the two numbers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54

Answer
(i) $26=2 \times 13$
$91=7 \times 13$
$\mathrm{HCF}=13$

LCM $=2 \times 7 \times 13=182$

Product of two numbers $26 \times 91=2366$

Product of HCF and LCM $13 \times 182=2366$

Math-O-Mania

Abhishek Dangayach

Hence, product of two numbers $=$ product of $\mathrm{HCF} \times \mathrm{LCM}$
(ii) $510=2 \times 3 \times 5 \times 17$
$92=2 \times 2 \times 23$

HCF = 2

LCM $=2 \times 2 \times 3 \times 5 \times 17 \times 23=23460$

Product of two numbers $510 \times 92=46920$

Product of HCF and LCM $2 \times 23460=46920$

Hence, product of two numbers $=$ product of $\mathrm{HCF} \times \mathrm{LCM}$
(iii) $336=2 \times 2 \times 2 \times 2 \times 3 \times 7$
$54=2 \times 3 \times 3 \times 3$

HCF $=2 \times 3=6$

LCM $=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7=3024$

Product of two numbers $336 \times 54=18144$

Product of HCF and LCM $6 \times 3024=18144$

Hence, product of two numbers $=$ product of $\mathrm{HCF} \times$ LCM.
3. Find the LCM and HCF of the following integers by applying the prime factorization method.
(i) 12, 15 and 21
(ii) 17, 23 and 29
(iii) 8, 9 and 25

Answer

Math-O-Mania

Abhishek Dangayach
(i) $12=2 \times 2 \times 3$
$15=3 \times 5$
$21=3 \times 7$

HCF $=3$

LCM $=2 \times 2 \times 3 \times 5 \times 7=420$
(ii) $17=1 \times 17$
$23=1 \times 23$
$29=1 \times 29$
$H C F=1$

LCM $=1 \times 17 \times 19 \times 23=11339$
(iii) $8=1 \times 2 \times 2 \times 2$
$9=1 \times 3 \times 3$
$25=1 \times 5 \times 5$

HCF =1

LCM $=1 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5=1800$
4. Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.

Answer

Using the property of HCF and LCM,

Product of LCM and HCF = product of number
LCM $\times 9=306 \times 657$

Math-O-Mania

Abhishek Dangayach

Divide both side by 9 we get
LCM $=(306 \times 657) / 9=22338$

5. Check whether $\mathbf{6 n}$ can end with the digit $\mathbf{0}$ for any natural number \mathbf{n}.

Answer

If any digit has last digit 10 that means it is divisible by 10 and the factors of $10=2 \times 5$.
So value $6 n$ should be divisible by 2 and 5 both $6 n$ is divisible by 2 but not divisible by 5 So it can not end with 0 .

6. Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ are composite numbers.

Answer
$7 \times 11 \times 13+13$

Taking 13 common, we get
$13(7 \times 11+1)$
$13(77+1)$

13 (78)
It is product of two numbers and both numbers are more than 1 so it is a composite number.
$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$

Taking 5 common, we get
$5(7 \times 6 \times 4 \times 3 \times 2 \times 1+1)$
$5(1008+1)$

5(1009)

It is product of two numbers and both numbers are more than 1 so it is a composite number.

> Math-O-Mania
7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?

Answer

They will be meet again after LCM of both values at the starting point.
$18=2 \times 3 \times 3$
$12=2 \times 2 \times 3$
LCM $=2 \times 2 \times 3 \times 3=36$
Therefore, they will meet together at the starting point after 36 minutes.

Math-O-Mania

