Exercise 1.1 (Real Numbers)

1. Use Euclid's division algorithm to find the HCF of:

(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255

Answer
(i) $225>135$ we always divide greater number with smaller one.

Divide 225 by 135 we get 1 quotient and 90 as remainder so that
$225=135 \times 1+90$
Divide 135 by 90 we get 1 quotient and 45 as remainder so that
$135=90 \times 1+45$
Divide 90 by 45 we get 2 quotient and no remainder so we can write it as
$90=2 \times 45+0$
As the remainder now is 0 , so divisor 45 is our HCF.
(ii) 38220 > 196 we always divide greater number with smaller one.

Divide 38220 by 196 then we get quotient 195 and no remainder so we can write it as
$38220=196 \times 195+0$
As there is no remainder so divisor 196 is our HCF.

Math-O-Mania

(iii) $867>255$ we always divide greater number with smaller one.

Divide 867 by 255 then we get quotient 3 and remainder is 102 so we can write it as
$867=255 \times 3+102$

Divide 255 by 102 then we get quotient 2 and remainder is 51 so we can write it as
$255=102 \times 2+51$

Divide 102 by 51 we get quotient 2 and no remainder so we can write it as
$102=51 \times 2+0$

As there is no remainder so divisor 51 is our HCF.

2. Show that any positive odd integer is of the form $6 q+1$, or $6 q+3$, or $6 q+5$, where q is some

 integer.Answer

Let take a as any positive integer and $\mathrm{b}=6$.

Then using Euclid's algorithm we get $a=6 q+r$ here r is remainder and value of q is more than or equal to 0 and $r=0,1,2,3,4,5$ because $0 \leq r<b$ and the value of b is 6

So total possible forms will $6 q+0,6 q+1,6 q+2,6 q+3,6 q+4,6 q+5$
$6 q+0$

6 is divisible by 2 so it is a even number
$6 q+1$

6 is divisible by 2 but 1 is not divisible by 2 so it is a odd number
$6 q+2$

6 is divisible by 2 and 2 is also divisible by 2 so it is a even number
$6 q+3$
6 is divisible by 2 but 3 is not divisible by 2 so it is a odd number

Math-O-Mania

$6 q+4$
6 is divisible by 2 and 4 is also divisible by 2 it is a even number
$6 q+5$
6 is divisible by 2 but 5 is not divisible by 2 so it is a odd number
So odd numbers will in form of $6 q+1$, or $6 q+3$, or $6 q+5$.
3. An army contingent of 616 members is to march behind an army band of $\mathbf{3 2}$ members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

Answer
HCF $(616,32)$ will give the maximum number of columns in which they can march.
We can use Euclid's algorithm to find the HCF.
$616=32 \times 19+8$
$32=8 \times 4+0$
The HCF $(616,32)$ is 8 .
Therefore, they can march in 8 columns each.

4. Use Euclid's division lemma to show that the square of any positive integer is either of form 3 m or

 $3 \mathrm{~m}+1$ for some integer m .[Hint: Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$. Now square each of these and show that they can be rewritten in the form $3 m$ or $3 m+1$.]

Answer

Let a be any positive integer and $b=3$.
Then $a=3 q+r$ for some integer $q \geq 0$
And $r=0,1$, 2 because $0 \leq r<3$
Therefore, $\mathrm{a}=3 \mathrm{q}$ or $3 q+1$ or $3 q+2$

Math-O-Mania

Or,
$a^{2}=(3 q)^{2}$ or $(3 q+1)^{2}$ or $(3 q+2)^{2}$

	$a=3 q$	$a=3 q+1$	$a=3 q+2$
$a^{\wedge} 2$	$9 q^{\wedge} 2$	$9 q^{\wedge} 2+6 q+1$	$9 q^{\wedge} 2+12 q+4$
	$3\left(3 q^{\wedge} 2\right)$	$3\left(3 q^{\wedge} 2+2 q\right)+1$	$3\left(3 q^{\wedge} 2+4 q+1\right)+1$
	$3 X$	$3 Y+1$	$3 Z+1$
	$X=$ $\left(3 q^{\wedge} 2\right)$	$Y=\left(3 q^{\wedge} 2+2 q\right)$	$Z=\left(3 q^{\wedge} 2+4 q+1\right)$

Where X, Y and Z are some positive integers
Hence, it can be said that the square of any positive integer is either of the form $3 m$ or $3 m+1$.
5. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 \mathrm{~m}+8$.

Answer
Let a be any positive integer and $b=3$
$a=3 q+r$, where $q \geq 0$ and $0 \leq r<3$
$\therefore \mathrm{a}=3 \mathrm{q}$ or $3 \mathrm{q}+1$ or $3 \mathrm{q}+2$
Therefore, every number can be represented as these three forms. There are three cases.
Case 1: When $\mathrm{a}=3 \mathrm{q}$,
$a^{\wedge} 3=(3 q)^{3}$
$=27 q^{3}$
$=9\left(3 q^{3}\right)$
$=9 \mathrm{~m}$,
Where m is an integer such that $\mathrm{m}=3 q^{3}$
Case 2: When $a=3 q+1$,

Math-O-Mania

$$
\begin{aligned}
a^{\wedge} 3 & =(3 q+1)^{3} \\
& =27 q^{3}+27 q^{2}+9 q+1 \\
& =9\left(3 q^{3}+3 q^{2}+q\right)+1 \\
& =9 m+1
\end{aligned}
$$

Where m is an integer such that $\mathrm{m}=\left(3 q^{3}+3 q^{2}+q\right)$

$$
\begin{aligned}
& \text { Case 3: When a }=3 q+2, \\
& \begin{aligned}
a^{3} & =(3 q+2)^{3} \\
& =27 q^{3}+54 q^{2}+36 q+8 \\
& =9\left(3 q^{3}+6 q^{2}+4 q\right)+8 \\
& =9 \mathrm{~m}+8
\end{aligned}
\end{aligned}
$$

Where m is an integer such that $\mathrm{m}=\left(3 q^{3}+6 q^{2}+4 q\right)$
Therefore, the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.

Math-O-Mania

